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Abstract

The first significant processing of Terra MODIS data, called Collection 3, covered the period from November 2000 to December

2002. The Collection 3 leaf area index (LAI) and fraction vegetation absorbed photosynthetically active radiation (FPAR) products

for broadleaf crops exhibited three anomalies (a) high LAI values during the peak growing season, (b) differences in LAI seasonality

between the radiative transfer-based main algorithm and the vegetation index based back-up algorithm, and (c) too few retrievals

from the main algorithm during the summer period when the crops are at full flush. The cause of these anomalies is a mismatch

between reflectances modeled by the algorithm and MODIS measurements. Therefore, the Look-Up-Tables accompanying the

algorithm were revised and implemented in Collection 4 processing. The main algorithm with the revised Look-Up-Tables

generated retrievals for over 80% of the pixels with valid data. Retrievals from the back-up algorithm, although few, should be used

with caution as they are generated from surface reflectances with high uncertainties.
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1. Introduction

Leaf area index (LAI) and fraction of photosynthe-

tically active radiation (0.4–0.7 mm) absorbed by

vegetation (FPAR) are two of several geophysical

products that are operationally produced from the

MODerate resolution Imaging Spectroradiometer

(MODIS), an instrument onboard the National Aero-

nautics and Space Administration’s Terra and Aqua

platforms (Justice et al., 2002). LAI and FPAR products
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are required to describe the exchange of fluxes of energy,

mass (e.g., water and CO2) and momentum between the

surface and atmosphere (Sellers et al., 1997).

The latest version of the Terra MODIS LAI and

FPAR time series is nearly 5 years long and is a

compilation of the entire data series starting from

February 2000 to the present. The products are

generated from surface reflectance data by a radiative

transfer-based algorithm that utilizes biome-specific

Look-Up-Tables (Knyazikhin et al., 1998). The

products must therefore be evaluated and validated

for each of the biomes in order to diagnose product

anomalies and devise algorithm refinements (Morisette

et al., 2002; Privette et al., 2002; Cohen et al., 2003;

Fensholt et al., 2004; Huemmrich et al., 2005; Tan et al.,
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2005; Wang et al., 2004). This paper is focused on

product evaluation and algorithm refinements for broad-

leaf crops, which is one of the six-biome classes

implemented in the MODIS LAI/FPAR algorithm.

Agriculture represents 13.5% of the total vegetated area

(Friedl et al., 2002) and broadleaf crops comprise a little

over half the cultivated area (52%). The major con-

centrations of this biome class are in Asia (39%), North

America (22%), Europe (17%), and South America

(15%).

MODIS product versions are called Collections

suggesting the linkages between various products of the

same generation. For instance, the LAI/FPAR algorithm

uses MODIS land cover and surface reflectance

products to derive LAI and FPAR products. The surface

reflectance algorithm in turn uses the aerosol optical

depth product to derive atmosphere-corrected surface

reflectances from calibrated, geo-projected and cloud-

screened MODIS radiance measurements. Collection 3

represents the first significant processing ofMODIS data

into products after various initial problems with

instrument calibration and electronics have been

resolved, and covers the 26-month period from

November 2000 to December 2002 with a gap between

days 161and 184 inyear 2001due to a failure on theTerra

platform. This Collection thus provided an opportunity

for evaluating the initial batch of products from Terra

MODIS. These efforts lead to algorithm refinements

which were implemented in Collection 4 processing that

started in January 2003. This paper describes this

process, but with focus on broadleaf crops.

The goal of this paper is three-fold: (a) evaluate

Collection 3 LAI products to diagnose product

anomalies, (b) devise refinements to the algorithm for

generating the next generation products, and (c) analyze

Collection 4 products and test whether the Collection 3

anomalies have been satisfactorily resolved.

The paper is organized as follows. Section 2 presents

a brief background on the LAI/FPAR algorithm and

products. The Collection 3 LAI product from broadleaf

crop pixels globally is evaluated in Section 3. A smaller

region (1200 km � 1200 km) in the upper mid-west of

the USA is selected for further analysis. LAI retrievals

depend critically on the quality of surface reflectance

data input to the algorithm—therefore, uncertainties in

surface reflectance product are quantified in Section 4.1.

The performance of the algorithm is then examined as a

function of surface reflectance uncertainties (Sections

4.2 and 4.3). This analysis pointed to a mismatch

between modeled and measured reflectances as the

cause of poor algorithm performance (Section 4.4).

Algorithm refinements and Collection 4 LAI product
evaluation are described in Section 5. Finally, the

conclusions are highlighted in Section 6.

2. MODIS LAI/FPAR algorithm and products

2.1. Algorithm inputs

The algorithm performs retrievals of LAI and FPAR

from daily surface reflectance data at 1 km resolution.

Currently, red (648 nm) and near-infrared (858 nm)

bands are utilized because of unknown or high

uncertainties in the other land bands (Wang et al.,

2001). Another important input to the algorithm is the

biome classification map, in which the global vegetation

is stratified into six canopy architectural types, or biomes

(Friedl et al., 2002). The six biomes are: (1) grasses and

cereal crops, (2) shrubs, (3) broadleaf crops, (4) savannas,

(5) broadleaf forests, and (6) needle leaf forests.

2.2. Algorithm

The retrievals are performed with an algorithm based

on principles of radiative transfer in vegetation

canopies, hereafter called the main algorithm (Knya-

zikhin et al., 1998). The algorithm is designed to output

LAI and FPAR given sun and view directions,

bidirectional reflectance factor (BRF) and their uncer-

tainties at different spectral bands and the six-biome

land cover type. The algorithm compares observed and

modeled BRFs for a suite of canopy structures and soil

patterns that represent an expected range of typical

conditions for a given biome type. All canopy/soil

patterns for which modeled and observed BRFs differ

by within a specified level band-dependent uncertainty

are considered as acceptable solutions. The mean values

of LAI and FPAR averaged over all acceptable solutions

are reported as the output of the algorithm. This

algorithm may fail if input data uncertainties are high or

due to deficiencies in model formulation, in which case

the retrievals are generated by a back-up algorithm

based on biome-specific empirical relationships

between the normalized difference vegetation index

(NDVI) and LAI/FPAR (Myneni et al., 1997).

2.3. LAI and FPAR products

The products are produced at 1 km spatial resolution

daily and composited over an 8-day period based on the

maximum FPAR value. The 8-day product is distributed

to the public from the EROS Data Center Distributed

Active Archive Center. The products are projected on

the Integerized Sinusoidal (Collection 3) and the
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Sinusoidal (Collection 4) 108 grids, where the globe is
tiled into 36 tiles along the east–west axis, and 18 tiles

along the north–south axis. Further details can be found

in (Myneni et al., 2002).

3. Collection 3 LAI product anomalies

As mentioned previously, Collection 3 represented

the first significant processing of MODIS data into

various geophysical products. It covered the 26-month

period fromNovember 2000 to December 2002 and was

used to evaluate the initial batch of products. Broadleaf

crops constitute about 52% of the global cultivated area

with major concentrations in Asia, North America, and

Europe. The annual course of broadleaf crop LAI during

2001 from these regions is shown in Fig. 1. Three

anomalies are apparent: (a) unrealistically high LAI

values during the peak growing season from both the

main and back-up algorithms, especially in North

America, (b) differences in LAI seasonality between the

main and back-up algorithms everywhere, and (c) the

main algorithm tends to fail more often in the summer

period when the crops are at full flush.
Fig. 1. Annual course of Terra MODIS Collection 3 LAI product during ye

Asia. Results from the main and back-up algorithms are shown separately. Th

up algorithms in the Northern Hemisphere is shown in (d). The data gap d
An investigation of these anomalies requires a

comprehensive analysis of the inputs and Look-Up-

Table entries of the algorithm. This is not feasible at the

global or hemispheric scale in view of the massive

amounts of data involved—the area extent of broadleaf

crops is about 8.8 � 106 km2. Therefore, the analysis is

focused on one MODIS tile (h11v04) from North

America, which is a 1200 km � 1200 km region in the

upper mid-west, about 40% of which is broadleaf crops

(Friedl et al., 2002). The first task is to ascertain that the

anomalies observed at the continental scale are also

seen in this tile. To that end, the annual course of

Collection 3 LAI for broadleaf crops in tile h11v04

during year 2001 is shown in Fig. 2.

Peak LAI values of about 6 during the summer time

are seen in the Collection 3 product. The seasonal

maximum LAI near the Bondville flux tower site for

year 2001 was about 4 according to FLUXNET ground

measurements (WWW1). LAI values of 2.5 (July 2000)

and 3.6 (August 2000) were reported by (Cohen et al.,

2003) at the same site. While these values, typically

measured in a small area near the flux tower, are perhaps

not representative of the tile average values for this
ar 2001 for broadleaf crops in (a) North America, (b) Europe, and (c)

e percentage of broadleaf crops pixels processed by the main and back-

uring days 161–184 was due to a Terra platform failure.
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Fig. 2. (a) Annual course of Terra MODIS Collection 3 LAI product during year 2001 for broadleaf crops in tile h11v04, and (b) the percentage of

broadleaf crops pixels processed by the main and back-up algorithms in tile h11v04.
biome, they nevertheless suggest that Collection 3 LAI

values are very likely overestimates. The LAI season-

ality from the main and back-up algorithms is different

as well—the back-up algorithm produces higher LAI

values during the spring and autumn. The main

algorithm retrievals are as few as 20% during the

summer months and most of the retrievals are from the

back-up algorithm. These anomalies are similar to the

ones seen at the global scale (Fig. 1), and therefore,

further analysis is focused on this one tile.

4. Analysis of Collection 3 LAI anomalies

The anomalies shown in Figs. 1 and 2 raise two

important questions: (1) Why does the main algorithm

fail so frequently? (2) Why do the main algorithm

retrievals of LAI compare so poorly with observations?.

This section is devoted to finding answers to these two

questions. LAI retrievals from the main algorithm

depend critically on the quality of surface reflectance

data input to the algorithm—therefore, the surface

reflectance product is first analyzed (Section 4.1). An

investigation of algorithm performance in terms of its

retrieval success (Section 4.2) and quality (Section 4.3)

provides the answer to the two questions raised above—

a mismatch between modeled and measured reflec-

tances (Section 4.4).

4.1. Uncertainties in surface reflectance product

The precision of measurements ( p1, p2, . . ., pn) of a

variable (P) may be characterized by the standard

deviation or by the coefficient of variation (D):

D ¼ M

S
(1)
where M is the mean of measurements ( p1, p2, . . ., pn)

and S is the standard deviation of measurements ( p1, p2,

. . ., pn). Precision typically refers to a particular value of

the variable. Uncertainty refers to precision over a range

of values of the variable. The goal here is to estimate the

magnitude of uncertainty in the MODIS surface reflec-

tance product relevant to this study. To this end, daily

surface reflectance data for the period July 20–27, 2001

from tile h11v04 are employed in this analysis.

The quality of MODIS surface reflectance product is

reported as high, intermediate, poor due to cloud effects,

and poor for other reasons (WWW2). The broadleaf

crop pixels in tile h11v04 are grouped into pixels with

‘‘good quality’’ data if there are at least four daily

surface reflectances of high or intermediate quality

during the 8-day period between 20 and 27 July 2001.

Likewise, the pixels with ‘‘poor quality’’ data are those

with at least four daily surface reflectances of quality

poor due to cloud effects or poor for other reasons.

Uncertainties in reflectances from pixels with good

quality data will therefore be due to incomplete

atmospheric correction and uncertainties in reflectances

from pixels with poor quality data will be due to

improper cloud screening and instrumental anomalies.

For the time being, it is assumed that the surface is

unchanged over the measurement period of 8 days and

that the solar and measurement geometry is identical

from day to day for all pixels in the tile. The coefficient

of variation for one ‘‘good (poor) quality’’ pixel is

calculated from high/intermediate (poor) quality daily

surface reflectances during the 8-day period.

The histograms of reflectance uncertainties for red

and near-infrared channels, evaluated as coefficients of

variation, for good and poor quality data in tile h11v04

are shown in Fig. 3a and b, respectively. The histograms

for good (poor) quality data show peaks at 13% (59%)
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Fig. 3. Histograms of coefficients of variation (DSR) at red and near-infrared bands for good quality data (a) and for poor quality data (b). Broadleaf

crop pixels in tile h11v04 are grouped into pixels with ‘‘good quality’’ data if there are at least four daily surface reflectances of high or intermediate

quality during the 8-day period between 20 and 27 July 2001. Likewise, the pixels with ‘‘poor quality’’ data are those with at least four daily surface

reflectances of quality poor due to cloud effects or poor for other reasons.
for red and at 10% (23%) for near-infrared channels.

The mean uncertainties (coefficients of variation) for

good (poor) quality data are 44% (63%) at red and 14%

(23%) at near-infrared bands. As expected, the

uncertainty level of poor quality data is higher than

good quality data. The main algorithm may be expected

to fail if the red and near-infrared uncertainties are

greater than the threshold value (20%) set in the

algorithm.

Note that these uncertainty levels are subject to the

assumption of invariant surface and measurement

geometry. While the surface may be reasonably

assumed to be unchanged over a period of 8 days,

the solar and view angles change from day to day and

from pixel to pixel in the tile. Reflectance variations due

to changing geometry are not part of product

uncertainty. Therefore, these variations must be

characterized, as discussed below.

The variation in solar zenith angle at the time of

measurement for both good and poor quality data during

this 8-day period is negligibly small, about 10%

(Fig. 4a). The variation in view zenith angle is, however,

large (Fig. 4b). The histograms show two peaks for good

quality data and none for poor quality data. Uncertain-

ties in good quality surface reflectances in the red

channel average 38%, 42%, and 46%when variations in

view zenith angle average less than 20%, 30–40%, and

85–95% (Fig. 4c). These reflectance uncertainties are

comparable to the mean uncertainty (44%) shown in

Fig. 3a. Likewise, the uncertainties in poor quality

surface reflectances in the red channel average 58%,

63%, and 68% when variations in view zenith angle

average less than 20%, 30–40%, and 85–95% (Fig. 4d).

Again, these uncertainties are comparable to the mean

uncertainty (63%) shown in Fig. 3b. Therefore, we

conclude that variations in measurement geometry
contributed little to the uncertainty in the surface

reflectance product.

The uncertainties levels in both good quality data

(44% at red) and poor quality data (63% at red, 23% at

near-infrared) are greater than the threshold values

(20%) set in the MODIS LAI/FPAR algorithm. The

main algorithm will fail in all such cases. Does this

explain why there are too few main algorithm retrievals

of LAI? Perhaps not, as these uncertainties levels may

not be representative of the global reflectance product

for this biome. Even if they were, it does not explain

why the main algorithm retrievals compare poorly with

field measurements. Therefore, a further investigation

of algorithm performance as a function of input

reflectance uncertainty is needed.

4.2. Main algorithm success rate

Pixels with good quality reflectance data, that is,

pixels with at least four daily observations of high or

intermediate quality surface reflectances during the 8-

day period between 20 and 27 July 2001, were further

sub-divided in two classes—those with uncertainties

less than 12% and greater than 12%. Likewise, the

pixels with poor quality data resulted in two additional

groups. The four subsets are abbreviated as GL, GH, PL,

and PH. The first character indicates the quality of the

pixels, good (G) or poor (P). The second character refers

to the uncertainty level, low dSR � 12% (L), or high (H)

dSR > 12%.

The main LAI/FPAR algorithm was executed with

reflectance data from these four groups. The percentage

of pixels for which the main algorithm produces a

retrieval is defined as the retrieval index. This index

characterizes the spatial coverage of the product and not

its precision. The retrieval indices for the subsets GL,
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Fig. 4. (a) Histograms of coefficients of variation of solar zenith angle and view zenith angle (b) for good and poor quality data. Uncertainties in red

reflectance for view zenith angle variations less than 20%, 30–40% and 85–95% are shown in (c) for good quality data and (d) for poor quality data.
GH, PL, and PH are 16.5%, 11.8%, 0.01%, and 1.7%,

respectively. As expected, the main algorithm performs

better with good quality input data. Likewise, the

retrieval index is higher for good quality data with low

uncertainties than for good quality data with high

uncertainties. It is also noteworthy that the main

algorithm fails as expected in the case of poor quality

with low uncertainties. Nevertheless, the retrieval index

for good quality data with low uncertainties is low, only

about 16.5%. What is the upper limit for the retrieval

index? To answer this question, the following analysis

was performed.

The good quality data were divided into narrow

classes with respect to uncertainties in surface

reflectances (dSR) and the main algorithm was executed

on these narrow groups of data. The regression curve

RI ¼ EðRI;DSR ¼ dSRÞ of the retrieval index (RI) with

respect to uncertainty of surface reflectance was

evaluated. Here E(RI, DSR = dSR) is the expectation

of RI for the conditionDSR takes the value dSR (Fig. 5a).
As expected, the retrieval index is a decreasing function

of input data uncertainties. The maximum retrieval

index of about 17% is achieved when dSR � 10%. These

results indicate the main algorithm success rate to be

only 17% for highly accurate surface reflectances. This
suggests a problem with the algorithm. These results are

consistent with those seen at the global and tile scale

(Figs. 1d and 2b).

4.3. Quality of main algorithm retrievals

The quality of retrievals from the main algorithm is

another measure of algorithm performance. Specifi-

cally, it is of interest to assess the relation between input

reflectance data quality and output LAI quality. The

coefficient of variation of retrieved LAI values (dLAI)

during the 8-day period was calculated for each pixel,

separately from the subsets of good and poor quality

pixels, and taken as a measure of uncertainties in LAI

retrievals. The variation in LAI values due to

uncertainties in good quality surface reflectances is

approximately 10% (Fig. 5b). The histogram of

retrievals from poor quality pixels is wide, without

obvious peaks, indicating low retrieval quality (Fig. 5b).

Thus, there is a good correspondence between input and

output uncertainties. The following analysis was

performed to formalize this relationship.

Pixels with both good and poor quality data were split

into narrow classes with respect to dSR of the red band.

The coefficient of variation of LAI,DLAI, was calculated
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Fig. 5. Impact of input reflectance uncertainties on retrieval index and quality. The percentage of pixels for which the main algorithm produces a

retrieval is defined as the retrieval index. (a) Shows decreasing retrieval index with increasing uncertainties in surface reflectances (DSR). (b) Shows

the histogram of the coefficient of variation of LAI (DLAI) derived from good and poor quality data. The positive relationship between uncertainties

in LAI retrievals (DLAI) and uncertainties in input surface reflectances (DSR) is shown in (c).
for each pixel. Then DSR and DLAI were used to derive

the regression curve dLAI = E(DLAI, DSR = dSR) of DLAI

with respect to variations in surface reflectance (Fig. 5c).

The resulting relationship indicates that output LAI

uncertainty is nearly constant, about 20%, when input

reflectance uncertainties are less than 15%. Above this

input uncertainty threshold, output uncertainties are

linearly related to input uncertainties. This suggests that

the upper limit of TerraMODIS LAI product precision is

about 80% for broadleaf crops.

4.4. Main algorithm deficiencies

The analyses presented above (Sections 4.2 and 4.3)

indicate the main algorithm retrievals to be sensitive to

the quality of input surface reflectances. The algorithm

fails as expected in the case of poor quality reflectances.

However, the low success rates in cases of good quality

reflectances suggest a renewed look at the main

algorithm.

The main LAI/FPAR algorithm uses biome-specific

Look-Up-Tables which contain modeled canopy radia-

tion variables that together with measured surface

reflectances and their uncertainties generate LAI and

FPAR retrievals. The Collection 3 LAI/FPAR products
were generated with at-launch Look-Up-Tables based on

reflectance data from the sea-viewing wide field-of-view

sensor (SeaWiFS) (Tian et al., 2000). This could

potentially be a reason for the poor performance of the

main algorithm.

The average reflectance of broadleaf crops calculated

fromMODIS surface reflectance data from July 20 to 27,

2001, in tile h11v04 is 0.056 at red and 0.48 at near-

infrared. The comparable values from SeaWiFS data,

from July 1998, are 0.065 at red and 0.32 at near-infrared

(Tian et al., 2000). The red reflectance values are

comparable but the mean MODIS near-infrared reflec-

tance is 50% higher than the SeaWiFS value. The near-

infrared reflectance should decrease as the spatial

resolution decreases from 1 km (MODIS) to 8 km

(SeaWiFS) according to Tian et al. (2000). However, a

50% difference is beyond what can be expected from

resolution considerations alone, and may be due to

different sensors and atmospheric correction algorithms.

The 50% data density contour of good quality data,

defined as data from those pixels with at least four daily

observations of high or intermediate quality surface

reflectances during the 8-day period between 20 and 27

July 2001, occupies the space bounded by 0.02 �
red � 0.07 and 0.32 � near-infra red � 0.58 in the
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Fig. 6. (a) Shows the 50% data density contour of good quality data in the red–near-infarred space. The distribution of broadleaf crop pixels retrieved

with the Collection 3 main algorithm is shown in (b). About 10% of the MODIS data contour region (a) overlaps with the retrieval domain in the

Collection 3 algorithm (b). This mismatch between the simulated andMODIS reflectances is thus the main reason for the observed Collection 3 LAI

anomalies. The retrieval domain for Collection 4 algorithm is shown in (c). The overlap between Collection 4 retrieval domain and the 50%MODIS

data density contour is now 34%.
red–near-infrared space (Fig. 6a). That is, fully 50% of

the data are contained in the space enclosed by this

contour line. Only about 10% of this 50% contour

region overlaps with the SeaWiFS-based retrieval

domain in the Collection 3 algorithm (Fig. 6b). Most

of the MODIS surface reflectance data fall in the high

LAI region. Therefore, the main algorithm fails

frequently and when it produces a retrieval, the LAI

values are over-estimates compared to true values. This

mismatch between the simulated and MODIS reflec-

tances is thus the main reason for the observed

Collection 3 LAI anomalies.

5. Algorithm refinements and the Collection 4

products

The analyses presented in Section 4 indicate that the

reason why the main algorithm fails and why the

retrieved LAI values are over-estimates compared to

observations is the mismatch between the modeled and

observed MODIS surface reflectances (Fig. 6a and b).

Therefore, the Look-Up-Table entries were revised for

broadleaf crops based on Collection 3 MODIS

reflectances—this procedure is similar to that described
in Tian et al. (2000, 2002). The single scattering

albedos for red and NIR bands were tuned based on

MODIS data to maximize the overlap between modeled

and observed surface reflectances. The resulting

retrieval domain for the Collection 4 algorithm is

shown in Fig. 6.

The biome classification map accompanying the

algorithm was also updated. Significant misclassifica-

tion between broadleaf crops (biome 3) and grasslands

(biome 1), seen in the map used for Collection 3

retrievals, are now corrected in the new classification

map. It should be noted that biome misclassification

might have a two-fold effect—a direct effect, whereby a

misclassification may result in the selection of a wrong

Look-Up-Table during the retrieval, and an indirect

effect, through the algorithm calibration procedure

when the Look-Up-Tables are developed.

The algorithm also benefited from improvements to

the upstream algorithms—calibration, cloud screening,

atmospheric correction, etc. In addition, the composit-

ing scheme was revised as follows. Amongst the set of

LAI/FPAR values from the 8-day compositing period,

the LAI/FPAR pair corresponding to the maximum

FPAR value was selected to represent the 8-day
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Fig. 7. (a) Annual course of Terra MODIS Collection 4 LAI product during year 2001 for broadleaf crops in tile h11vo4 and (b) the percentage of

broadleaf crops pixels processed by the main and back-up algorithms in tile h11v04.
composited MODIS LAI product in Collections 1–3.

This scheme leads to poor quality compositing results

when back-up retrievals overwhelm main algorithm

retrievals because the back-up algorithm retrievals are

unreliable (Fig. 5b). This compositing scheme was

changed in Collection 4 to select the LAI/FPAR pair
Fig. 8. Annual course of Terra MODIS Collection 4 LAI product during ye

Asia. Results from the main and back-up algorithms are shown separately. Th

up algorithms in the Northern Hemisphere is shown in (d). The data gap d
corresponding to the maximum FPAR value generated

by the main algorithm. The back-up algorithm retrievals

are selected only when no main algorithm retrievals are

available during the compositing period.

The above-mentioned changes were implemented in

the Collection 4 algorithm which was then integrated
ar 2001 for broadleaf crops in (a) North America, (b) Europe, and (c)

e percentage of broadleaf crops pixels processed by the main and back-

uring days 161–184 was due to a Terra platform failure.
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into the MODIS processing system to produce the

Collection 4 products. This processing started in January

2003 as two streams—one forward andone re-processing

of the existing data archive. The resulting products

constitute the latest version and represent the entire

MODIS time series (February 2000 to the present).

The Collection 4 broadleaf crops LAI product is now

analyzed both for the Bondville tile (Fig. 7) and the

Northern Hemisphere (Fig. 8) in order to ascertain

whether the anomalies seen in Collection 3 (Figs. 1 and

2) have been satisfactorily resolved. The retrievals show

peak summer LAI values of about 2–3 from the main

algorithm and 3–4 from the back-up algorithm. These

values compare better with seasonal maximum LAI of 4

measured near the Bondville flux tower site and values

of 2.5 (July 2000) and 3.6 (August 2000) reported by

Cohen et al. (2003).

The Collection 4 retrievals from the main algorithm

are significantly higher, over 80% of pixels with valid

data, during the summer months, and represent a major

fraction of the retrievals during the growing season (Figs.

7b and 8d compared to Figs. 1d and 2b). Differences in

LAI seasonality between themain and back-up algorithm

persisted in Collection 4 products. Clearly, the retrievals

from the back-up algorithm should use with caution, as

these are produced with uncertain input data and

therefore not suitable for validation studies (Running

et al., 1999). Based on results presented in Figs. 7 and 8, it

is concluded that the two anomalies noted in Collection 3

broadleaf crop LAI retrievals (Figs. 1 and 2) have been

satisfactorily resolved in the Collection 4 retrievals. The

validation of Collection 4 LAI and FPAR products is

reported in various journal articles (Tan et al., 2005;

Wang et al., 2004; Cohen et al., 2003).

6. Conclusions

This paper reports on investigations about the Terra

MODIS LAI product for broadleaf crops, one of six

biome classes implemented in the LAI/FPAR algo-

rithm. The following conclusions can be drawn based

on the results presented in this article. (1) Three LAI

anomalies are seen in the Collection 3 product—(a)

high LAI values during the peak growing season, (b)

differences in LAI seasonality between the main and

back-up algorithms, and (c) too few retrievals from the

main algorithm during the summer period when the

crops are at full flush. (2) The quality of LAI generated

by the algorithm depends critically on the quality of

surface reflectance data input to the algorithm. (3) The

algorithm frequently fails or generates LAI over-

estimates because of a mismatch between modeled
and measured reflectances. Therefore, the Look-Up-

Tables accompanying the algorithm were revised for

this biome class. (4) The anomalies seen in Collection 3

LAI product are satisfactorily resolved in Collection 4

produced with the revised Look-Up-Tables—the main

algorithm generates over 80% of the retrievals from

pixels with valid input surface reflectances. (5) Finally,

the few retrievals in the Collection 4 product from the

back-up algorithm should be used with caution as these

are generated from highly uncertain surface reflectances

and as such are not suitable for validation studies.
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Appendix A. WWW sites

WWW1: FLUXNET sites, http://daac.ornl.gov/

FLUXNET/.

WWW2:MODIS surface reflectance products, http://

modis-land.gsfc.nasa.gov/MOD09/MOD09ProductInfo

/MOD09Level2G500m.htm.
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